资讯
展览资讯 大型展会 灯光节 大型盛典 赛事 中标捷报 产品快讯 热门话题 艺术节 活动 演出 新闻 数艺报道 俱乐部签约
观点
大咖专访 观点洞察 书籍推荐 吐槽 设计观点 企业访谈 问答 趋势创新 论文 职场方法 薪资报价 数艺专访
幕后
幕后故事 团队访谈 经验分享 解密 评测 数艺访谈
干货
设计方案 策划方案 素材资源 教程 文案资源 PPT下载 入门宝典 作品合集 产品手册 电子书 项目对接
  • 0
  • 0
  • 0

分享

百万年薪职位,千亿美元赛道,AIGC大爆发我能怎么赚钱?

原创 2023-03-06



  新智元报道  

编辑:Aeneas 好困
【新智元导读】AIGC火爆出圈,搅动了全球市场。有机构预测,2030年的市场规模将达到1100亿美元。而反应快的玩家,已经在布局这个赛道了。

整个2022年,AIGC火成了现象级的词汇。
到了今年,更是有人靠着AIGC拿到了百万年薪。
除此之外,小扎在自家平台上官宣,Meta将组建顶级AI团队,All in AIGC。
马斯克那边也传出消息,据说正忙着DeepMind挖一位叫Igor Babuschkin的大佬,成立AI实验室,开发ChatGPT的「替代品」。
大厂纷纷入局,AIGC实火。而它背后,是一个几年后千亿美元的市场。

万物皆可AIGC


去年,红杉资本就在研究报告中指出,到2030年,文本、代码、图像、视频、3D、游戏都可以通过AIGC生成,并且达到专业开发人员和设计师的水平。
到了今年,我们眼睁睁地见证了这一预测逐渐成真。比尔盖茨说,聊天机器人等AI新技术的出现,意义不亚于个人电脑和互联网的诞生。
美国银行认为,到2030年,AI利用数据的能力会使世界经济增长高达15.7万亿美元,而全球的人工智能市场到2026年可能达到9000亿美元。
根据商业咨询机构Acumen Research And Consulting预测,若考虑下一代互联网对内容需求的迅速提升,2030年AIGC市场规模将达到1100亿美元。

那么,AIGC的商业落地何以成为可能?

其实,靠的都是底层技术的突破。最开始,传统的AI绘画采用的是GAN,但结果输出效果不敢恭维。直到2021年,OpenAI团队开源了深度学习模型CLIP,以及7月出现的Diffusion,AI产生图片和文字的效果才有了大的飞跃。

2022年4月,OpenAI发布的DALL-E 2生成的人像和图片已经效果惊人,而到了8月,Stability AI发布的Stable Diffusion模型,更是取得了质的突破,AIGC的作品,已经完全可以媲美专业画师。

击败人类获得艺术大奖的AIGC作品《太空歌剧院》

而在AI生成视频方面,Meta、谷歌已经纷纷发布了模型。

去年9月,Meta发布了AI生成视频工具Make-A-Video,具有文字转视频、图片转视频、视频生成视频三大功能。

谷歌也紧随其后,发布了Imagen Video和Phenaki。其中Phenaki可以通过文字生成一段情节完整、连贯的视频。

B站up主「秋之雪华」发布的《夏末弥梦》,是全球首个由AI绘制、AI配音的动画,一经发布就震撼了广大网友。

来源:秋之雪华

AIGC商业化的潜力如此之大,但究竟有哪些落地场景呢?

从融资角度来看,目前AIGC有3个商业化的方向:

  • 第一个方向是通过AI生成文字,比如自动写邮件和文案。
  • 第二个方向是利用AI生成绘画,主要技术是结合多模态神经语言模型CLIP和图像扩散模型Diffusion,仅需提供一些关键字描述即可。
  • 第三个方向是AIGC的底层技术模型开发,Stable AI是这个方向的顶流之一。

而这些方向,都可以指向丰富的应用场景,其中非常有代表性的领域,就是游戏、电商、广告传媒。

游戏

开发游戏周期长、成本高,通常需要花费几年时间和上千万资金,好在AIGC可以极大提高游戏的开发效率。
具体来说,游戏中的剧本、人物、头像、道具、场景、配音、动作、特效、主程序未来都可以透过AIGC产生。

AIGC技术

在游戏中的应用

AI生成文字

剧情设计、游戏剧本、情节叙事

AI生成图像

人物、头像、道具设计

AI生成音频

人物配音、音效、音乐

AI生成影片

游戏动画、人物动作、特效

AI生成3D

人物3D模型、游戏场景

AI生成代码

地图编辑器、游戏代码

AIGC技术在游戏中的应用
AIGC的加入,让游戏开发者的所需的时间和成本大幅降低。根据竞核对一位开发者的采访,现在为一张图片生成概念图的时间,已经从3周下降到了1个小时,减少了120比1。
现在,他们只需要画出动画的轮廓,然后由成本较低的AI「画师」大军完成耗时的工作,为动画胶片上色、填充线条即可。
甚至,已经有游戏开发商开始让玩家通过AIGC自己创建头像。玩家只需要自己描述,就能生成头像的图片。
在关卡设计上,AIGC工具可以瞬间生成一个1920年艳舞时代的纽约的世界,或者是神秘的刀锋战士式的未来,或者是托尔金式的幻想世界。
根据AIGC在文字和图像方向的推进速度,以上应用在五到十年之内应该可以实现。
现在,已经有不少游戏大厂开始着手开发AI作画、NLP等大模型了;而中大型游戏厂商则积极接入已有大模型,为游戏生成流程打造专属的小模型。

电商

当前,随着数字技术的发展和应用、消费模式的转变和升级,沉浸式购物体验将逐渐成为电商领域发展的新方向。
AIGC正可用于商品三维模型、虚拟人主播乃至虚拟货场的构建,通过和AR、VR等新技术的结合,实现视听等多感官交互的沉浸式购物体验。
比如,基于商品在不同角度下拍摄的图像,利用视觉算法,就可以生成商品的三维模型和纹理,让客户可以在线上进行虚拟观看、试穿等行为。
根据电商平台数据显示,三维购物的转化率平均值约为70%,较行业平均水平提升了九倍左右。
广告传媒
另外,AIGC作为新型的内容生产方式,可以为媒体的内容生产全面赋能。
比如AI可以基于算法自动编写新闻,帮助媒体更快、更智能化地生产内容;AI还可以通过视频字幕生成、视频锦集、视频拆条、视频超分等智能化剪辑工具,帮助我们实现智能视频剪辑。
而在新闻播报中,已经出现了越来越多的AI合成主播,新华社、中央广播电视总台、人民日报社等媒都推出了「新小微」、「小C」等虚拟新闻主持人。

AI手语主播在与央视新闻主播朱广权进行互动
在传媒领域,AI绘画、AI合成视频、AI文字创作等工具,都将大大提高创意素材的生成效率。
可以看到,AIGC产业生态的加速,会带我们走向「模型即服务」的未来。
目前,AIGC的应用主要在三大层——基础层、中间层、应用层。
  • 基础层主要是由预训练模型的技术投入,主要代表为上游基础设施提供方如Open AI、Stability AI等;
  • 中间层是垂直化、场景化、个性化的模型和应用工具;
  • 应用层即面向C端的用户的文字、图片、音视频等内容生成服务等。

初创公司的三大挑战

可以说,AI绘画、AI聊天等AI服务能力强大的背后,离不开预训练大模型的支持。
然而,大模型就意味着更高计算资源以及高效的平台进行训练和推理。据报道,ChatGPT的训练使用了成百上千张GPU卡,单次训练成本450万美金,整体训练成本高达1200万美金。
甚至,对于那些想要入局的新玩家来说,更是有三个挑战不得不去面对:
  • 前期投入大
数据、算力、算法是驱动AIGC发展的三驾马车,要实现AIGC的发展,这三者缺一不可,但每一项的发展,都需要企业投入大量的资金,尤其是前期的硬件投资更是占企业投入资金的大多数。
  • 算力要求高
从AI生成图片到AI生成视频要用到大量数据训练模型,对算力要求呈指数级的提升,同时也需要快速高效的方式来处理数据集。
  • 缺乏成熟的算法模型
市场上模型过多,缺乏被广泛验证的成熟模型,模型的好坏及算法调优的经验决定了产出内容的质量。
即便是以AI绘画走红全球的新晋独角兽公司Stability AI,也是如此。
2022年8月,由Stability AI推出的开源AI模型Stable Diffusion,可以说是AI图像生成发展过程中的一个里程碑。
借助这一模型,任何人只需要提供一段文字描述,就有机会创作出任意风格的绘画作品。不仅如此,对于开发者来说,Stable Diffusion的运行速度也非常快,并且有资源和内存的要求也很低。
然而,想要训练这类机器学习基础模型,却不那么容易。因为你不仅需要一个具有数千张显卡的高性能计算集群,而且还需要能有效利用该集群的软件。
据报道,Stable Diffusion这样的模型训练起来也非常困难,需要使用超过5400个NVIDIA A100 GPU训练,共花费15万个GPU小时,仅训练模型就花了60万美元。
为了解决这一问题,Stability AI在2022年11月的时候正式宣布,选择亚马逊云科技作为首选云计算供应商。
在Amazon SageMaker(AWS的端到端机器学习服务)及其模型并行库的加持下,Stability AI的模型训练时间和成本减少了58%。
与此同时,通过使用SageMaker托管的基础设施和优化库,Stability AI能够使其模型训练具有更高韧性和性能。这些优化和性能改进适用于具有数百或数千亿参数的模型。
无独有偶,美国明星AI创企Hugging Face,最近也将自己的开源工具集成进了Amazon SageMaker。
如此一来,不仅可以帮助Hugging Face加速构建生成式AI应用的大型语言模型和大型视觉模型的训练、微调和部署,而且也让云计算客户可以针对特定用例进一步优化其模型的性能,同时降低成本。
综上所述,我们不难看出,AIGC大模型的训练和推理,往往是需要强大的「AI软件工具和平台」的支持的。

为何做出如此选择?

在这场热潮中,亚马逊云科技从未缺席。
据了解,亚马逊云科技目前已经联合了相当多的行业客户,共同探索AIGC的落地场景,并尝试打造可商业化和可复制的行业应用案例。
作为全球最大的公有云供应商,亚马逊云科技于2017年在re:Invent全球大会上推出了全球首个用于机器学习的集成开发环境(IDE)Amazon SageMaker。
借助这项完全托管的机器学习服务,开发人员、数据科学家、还是商业分析师都能够快速、轻松地准备数据,并在规模上构建、训练和部署高质量的机器学习模型,然后直接将模型部署到生产就绪托管环境中,大大降低了机器学习的使用门槛。
在IDC评估的8家供应商中,亚马逊云科技凭借其机器学习旗舰产品Amazon SageMaker强大的功能、不断提升的交付能力以及在保持开源方面的领先优势,被IDC列入「领导者」阵营,并居于图中最高最远位置。

来源:IDC
具体来说,亚马逊云科技具有以下优势:
  • 计算资源丰富
户无需前期硬件投入,即可随时使用。
  • 自研芯片性价比高
自研的AI加速芯片WS Trainium和AWS Inferential ML,在提供高性能解决方案的同时,还可为用户节省高达50%的训练成本,以及70%的推理成本。
  • 超大规模工作负载时成本最优
用户可以在Amazon SageMaker中使用托管式Amazon EC2 Spot实例轻松训练机器学习模型。与按需实例相比,使用托管的Spot实例可以将成本优化高达90%。
  • 拥有广泛验证的算法模型
Amazon SageMaker JumpStart提供了350多种内置算法、预训练模型和预构建的解决方案模板。不仅有着Stable Diffusion和Bloom这种最先进的模型,同时还提供如TensorFlow、PyTorch、Hugging Face和MXNet等SOTA的开源模型,并且可以实现一键部署。

大会报名

为了帮助大家更深入了解和探索AIGC,揭秘AIGC的概念及火爆出圈背后的驱动力,了解AIGC的商业化落地机遇及关键趋势洞察,以及探索AIGC在游戏、广告、电商等领域的创新实践。
亚马逊云科技将于2023年3月9号14:00-18: 00举办「AIGC创新实践在线大会」,以AIGC+游戏解锁新场景,AIGC+电商提供新体验,AIGC+广告媒体创造新内容入手,分享行业应用场景及最佳实践。
目前,大会报名正在火热进行中,感兴趣的朋友可以扫描下方二维码或点击底部「阅读原文」进行申请。
报名链接:https://www.awsevents.cn/AIGC0309/registerSignUp.aspx?s=8208&smid=17001

阅读原文

* 文章为作者独立观点,不代表数艺网立场转载须知

本文内容由数艺网收录采集自微信公众号新智元 ,并经数艺网进行了排版优化。转载此文章请在文章开头和结尾标注“作者”、“来源:数艺网” 并附上本页链接: 如您不希望被数艺网所收录,感觉到侵犯到了您的权益,请及时告知数艺网,我们表示诚挚的歉意,并及时处理或删除。

数字媒体艺术 新媒体艺术 科技艺术

11651 举报
  0
登录| 注册 后参与评论